Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(1): e0132923, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38112445

RESUMEN

Common sterilization techniques for labile and sensitive materials have far-reaching applications in medical, pharmaceutical, and industrial fields. Heat inactivation, chemical treatment, and radiation are established methods to inactivate microorganisms, but pose a threat to humans and the environment and can damage susceptible materials or products. Recent studies have demonstrated that cold low-pressure plasma (LPP) treatment is an efficient alternative to common sterilization methods, as LPP's levels of radicals, ions, (V)UV-radiation, and exposure to an electromagnetic field can be modulated using different process gases, such as oxygen, nitrogen, argon, or synthetic (ambient) air. To further investigate the effects of LPP, spores of the Gram-positive model organism Bacillus subtilis were tested for their LPP susceptibility including wild-type spores and isogenic spores lacking DNA-repair mechanisms such as non-homologous end-joining (NHEJ) or abasic endonucleases, and protective proteins like α/ß-type small acid-soluble spore proteins (SASP), coat proteins, and catalase. These studies aimed to learn how spores resist LPP damage by examining the roles of key spore proteins and DNA-repair mechanisms. As expected, LPP treatment decreased spore survival, and survival after potential DNA damage generated by LPP involved efficient DNA repair following spore germination, spore DNA protection by α/ß-type SASP, and catalase breakdown of hydrogen peroxide that can generate oxygen radicals. Depending on the LPP composition and treatment time, LPP treatment offers another method to efficiently inactivate spore-forming bacteria.IMPORTANCESurface-associated contamination by endospore-forming bacteria poses a major challenge in sterilization, since the omnipresence of these highly resistant spores throughout nature makes contamination unavoidable, especially in unprocessed foods. Common bactericidal agents such as heat, UV and γ radiation, and toxic chemicals such as strong oxidizers: (i) are often not sufficient to completely inactivate spores; (ii) can pose risks to the applicant; or (iii) can cause unintended damage to the materials to be sterilized. Cold low-pressure plasma (LPP) has been proposed as an additional method for spore eradication. However, efficient use of LPP in decontamination requires understanding of spores' mechanisms of resistance to and protection against LPP.


Asunto(s)
Bacillus subtilis , Esporas Bacterianas , Humanos , Bacillus subtilis/genética , Catalasa/metabolismo , Esporas Bacterianas/fisiología , Esterilización/métodos , Proteínas/metabolismo , Calor , ADN/metabolismo
2.
Microorganisms ; 10(3)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35336144

RESUMEN

The Chlorophyll d-producing cyanobacterium Acaryochloris marina is widely distributed in marine environments enriched in far-red light, but our understanding of its genomic and functional diversity is limited. Here, we take an integrative approach to investigate A. marina diversity for 37 strains, which includes twelve newly isolated strains from previously unsampled locations in Europe and the Pacific Northwest of North America. A genome-wide phylogeny revealed both that closely related A. marina have migrated within geographic regions and that distantly related A. marina lineages can co-occur. The distribution of traits mapped onto the phylogeny provided evidence of a dynamic evolutionary history of gene gain and loss during A. marina diversification. Ancestral genes that were differentially retained or lost by strains include plasmid-encoded sodium-transporting ATPase and bidirectional NiFe-hydrogenase genes that may be involved in salt tolerance and redox balance under fermentative conditions, respectively. The acquisition of genes by horizontal transfer has also played an important role in the evolution of new functions, such as nitrogen fixation. Together, our results resolve examples in which genome content and ecotypic variation for nutrient metabolism and environmental tolerance have diversified during the evolutionary history of this unusual photosynthetic bacterium.

3.
Life (Basel) ; 13(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36676062

RESUMEN

The Concordia Research Station provides a unique location for preparatory activities for future human journey to Mars, to explore microbial diversity at subzero temperatures, and monitor the dissemination of human-associated microorganisms within the pristine surrounding environment. Amplicon sequencing was leveraged to investigate the microbial diversity of surface snow samples collected monthly over a two-year period, at three distances from the Station (10, 500, and 1000 m). Even when the extracted total DNA was below the detection limit, 16S rRNA gene sequencing was successfully performed on all samples, while 18S rRNA was amplified on 19 samples out of 51. No significant relationships were observed between microbial diversity and seasonality (summer or winter) or distance from the Concordia base. This suggested that if present, the anthropogenic impact should have been below the detectable limit. While harboring low microbial diversity, the surface snow samples were characterized by heterogeneous microbiomes. Ultimately, our study corroborated the use of DNA sequencing-based techniques for revealing microbial presence in remote and hostile environments, with implications for Planetary Protection during space missions and for life-detection in astrobiology relevant targets.

4.
Genome Biol Evol ; 13(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34791212

RESUMEN

The general importance of transposable elements (TEs) for adaptive evolution remains unclear. This in part reflects a poor understanding of the role of TEs for adaptation in nonmodel systems. Here, we investigated whether insertion sequence (IS) elements are a major source of beneficial mutations during 400 generations of laboratory evolution of the cyanobacterium Acaryochloris marina strain CCMEE 5410, which has experienced a recent or on-going IS element expansion and has among the highest transposase gene contents for a bacterial genome. Most mutations detected in the eight independent experimental populations were IS transposition events. Surprisingly, however, the majority of these involved the copy-and-paste activity of only a single copy of an unclassified element (ISAm1) that has recently invaded the strain CCMEE 5410 genome. ISAm1 transposition was largely responsible for the highly repeatable evolutionary dynamics observed among populations. Notably, this included mutations in multiple targets involved in the acquisition of inorganic carbon for photosynthesis that were exclusively due to ISAm1 activity. These mutations were associated with an increase in linear growth rate under conditions of reduced carbon availability but did not appear to impact fitness when carbon was readily available. Our study reveals that the activity of a single transposase can fuel adaptation for at least several hundred generations but may also potentially limit the rate of adaptation through clonal interference.


Asunto(s)
Elementos Transponibles de ADN , Transposasas , Adaptación Fisiológica/genética , Elementos Transponibles de ADN/genética , Genoma Bacteriano , Transposasas/genética
5.
Curr Biol ; 31(7): 1539-1546.e4, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33571437

RESUMEN

The evolution of phenotypic plasticity, i.e., the environmental induction of alternative phenotypes by the same genotype, can be an important mechanism of biological diversification.1,2 For example, an evolved increase in plasticity may promote ecological niche expansion as well as the innovation of novel traits;3 however, both the role of phenotypic plasticity in adaptive evolution and its underlying mechanisms are still poorly understood.4,5 Here, we report that the Chlorophyll d-producing marine cyanobacterium Acaryochloris marina strain MBIC11017 has evolved greater photosynthetic plasticity by reacquiring light-harvesting genes via horizontal gene transfer. The genes, which had been lost by the A. marina ancestor, are involved in the production and degradation of the light-harvesting phycobiliprotein phycocyanin. A. marina MBIC11017 exhibits a high degree of wavelength-dependence in phycocyanin production, and this ability enables it to grow with yellow and green light wavelengths that are inaccessible to other A. marina. Consequently, this strain has a broader solar niche than its close relatives. We discuss the role of horizontal gene transfer for regaining a lost phenotype in light of Dollo's Law6 that the loss of a complex trait is irreversible.


Asunto(s)
Evolución Biológica , Cianobacterias/genética , Fotosíntesis , Ficocianina , Transferencia de Gen Horizontal , Fotosíntesis/genética
6.
Astrobiology ; 18(11): 1425-1434, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30289268

RESUMEN

Submarine hydrothermal vents are inhabited by a variety of microorganisms capable of tolerating environmental extremes, making them ideal candidates to further expand our knowledge of the limitations for terrestrial life, including their ability to survive the exposure of spaceflight-relevant conditions. The spore resistance of two Bacillus spp. strains, APA and SBP3, isolated from two shallow vents off Panarea Island (Aeolian Islands, Italy), to artificial and environmental stressors (i.e., UVC radiation, X-rays, heat, space vacuum, hydrogen peroxide [H2O2], and low-pressure plasma), was compared with that of two close phylogenetic relatives (Bacillus horneckiae and Bacillus oceanisediminis). Additional comparisons were made with Bacillus sp. isolated from spacecraft assembly facilities (B. horneckiae, Bacillus pumilus SAFR-032, and Bacillus nealsonii) and the biodosimetry strain and space microbiology model organism Bacillus subtilis. Overall, a high degree of spore resistance to stressors was observed for the strains isolated from spacecraft assembly facilities, with an exceptional level of resistance seen by B. pumilus SAFR-032. The environmental isolate SBP3 showed a more robust spore resistance to UVC, X-rays, H2O2, dry heat, and space vacuum than the closely related B. horneckiae. Both strains (SBP3 and APA) were more thermotolerant than their relatives, B. horneckiae and B. oceanisediminis, respectively. SBP3 may have a novel use as a bacterial model organism for future interrogations into the potential of forward contamination in extraterrestrial environments (e.g., icy moons of Jupiter or Saturn), spacecraft sterilization and, broadly, microbial responses to spaceflight-relevant environmental stressors.


Asunto(s)
Bacillus/aislamiento & purificación , Descontaminación , Medio Ambiente Extraterrestre , Respiraderos Hidrotermales/microbiología , Nave Espacial , Esporas Bacterianas/aislamiento & purificación , Secuencia de Bases , Calor , Peróxido de Hidrógeno/análisis , Filogenia , Gases em Plasma/análisis , Presión , ARN Ribosómico 16S/genética , Rayos Ultravioleta , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...